Driver: The pump is usually driven by an AC constant speed motor. Variable speed, pneumatic, and hydraulic drivers are also utilized. Smaller pumps use solenoid coils as an economic drive mechanism.
Driver Mechanism: The drive mechanism translates the rotary motion of the driver into reciprocating movement. Industrial duty pumps will submerge this portion of the pump in an oil bath to assure reliability during continuous operation. Solenoid pumps use an electro-magnetic coil to directly create linear motion.
Flow Adjustment: Pump flow rate is adjustable by varying stroke length, effective stroke length, or stroking speed. Most metering pumps are supplied with a micrometer screw adjustment, or an electronic or pneumatic actuator to adjust pump flow rate in response to process signal.
Accuracy: The steady state accuracy of a correctly installed industrial grade metering pump is generally + 1.0% or better. Although a metering pump can generally be adjusted to pump at any flow rate between 0 and its maximum capacity, its accuracy is measured over a range determined by the pump's turndown ratio. Today’s hydraulically actuated metering pumps have a turndown ratio of 1,000-1, which means the pump will accurately dose chemicals anywhere between .1% and 100% of its rated capacity.
Liquid End: The liquid end is referred to as the “wetted” part of the pump. Its ability to protect plant personnel and the environment are important considerations when dealing with toxic or hazardous chemicals. Stainless steel, nickel alloys, or plastic materials are used – depending on the application’s specifications, which include: temperature, flow rate, fluid viscosity and the corrosiveness of the materials that will be pumped.
Significant enhancements have been made recently with “smart” materials, that enable pump manufacturers to design smaller, more efficient and more powerful pumps that run longer and more reliably than their predecessors.